
WordPress Plugin Development
Darko Gjorgjijoski

Freelance Web Developer with 7 years of experience

Interests: Back-end, Databases, DevOps, Security and occasionally gaming

gdarko darkog dg.mk

WordCamp Skopje - October 05-06 2019, FINKI

https://github.com/gdarko
https://profiles.wordpress.org/darkog/

Introduction to Plugin
Development
Based on Books Library plugin

https://github.com/gdarko/books-library

Presentation available on
dg.mk/wcskp19

https://github.com/gdarko/books-library
https://dg.mk/wcskp19

Purposes
- To add new functionality on the website
- To modify existing functionality on the website
- To save us some time

(At this time there are around 55 000 open source plugins available.)

Learning Resources
Always use the codex, the developer portals of wordpress.org first.

- https://codex.wordpress.org/
- https://developer.wordpress.org/
- https://developer.wordpress.org/plugins/intro/ (Official plugin development documentation)
- Stackoverflow https://wordpress.stackexchange.com 😎

https://codex.wordpress.org/
https://developer.wordpress.org/
https://developer.wordpress.org/plugins/intro/
https://wordpress.stackexchange.com/

Development Environment
At least Web Server (nginx, litespeed, apache, etc.) with PHP 5.6.20 and MySQL/MariaDB database.

The recommended PHP version is PHP7.3 (latest)

Some popular environments for development are as follows:

- Xampp
- Bitnami
- Local by flywheel
- Or just FTP/SFTP access to web server

Getting started
The first step is to create the plugin folder in wp-content/plugins/. Inside this folder (eg books-library) we need
one php file that initializes the plugin eg. books-library.php.

Plugin declaration is done with PHP comment block in the books-library/books-library.php file as follows:

<?php
/*
Plugin Name: Books Library
Plugin URI: https://thepluginurl.com
Description: Organizes your eBooks in WordPress
Author: Darko Gjorgjijoski
Version: 1.0.0
Author URI: https://darkog.com/
*/

https://thepluginurl.com

Publishing on the plugins directory
In order to successfully publish you are required to meet the following requirements:

- To have valid wordpress.org account
- To have valid readme.txt file (https://wordpress.org/plugins/developers/readme-validator/)
- To not use any trademarked word as first word in your plugin name/slug or
- To not use any trademarked logo it in your marketing assets
- To be compatible with GPL license

If approved you get SVN repository access to store your code. First you need to add the code
into the trunk and after that you need to create version tag in order to release version.

Plugins must be submitted for review at https://wordpress.org/plugins/developers/add/

https://wordpress.org/plugins/developers/readme-validator/
https://wordpress.org/plugins/developers/add/

Using Actions & Filters
Aka Hooks

Actions and Filters (aka Hooks)
Hooks are code segments that are defined at different places in the WordPress core, theme or plugins that allow us
to execute tasks or modify values of variables at some point of time during the page rendering lifecycle.

There are two types of hooks: Actions and Filters

Actions are triggered on specific events that take place in WordPress (either in the core, themes or plugins), such as
publishing a post and are used to perform specific task when the event occurs.

do_action('save_post', int $post_ID, WP_Post $post, bool $update)

Filters are similar to actions but they are used only to modify specific variable value.

$favourite_team = apply_filters('favourite_team', 'Manchester United')

Example 1 (Actions)
Notify site admin when user signed into the site

function dg_login_notification($user_login, \WP_User $user) {
 $subject = __('User login');
 $message = sprintf(__('%s logged into the site.'), $user_login);
 $email = 'info@mycompany.com';
 wp_mail($email, $subject, $message);
}
add_action('wp_login', 'dg_login_notification', 100, 2);

/**
* Fires after the user has successfully logged in.
* @param string $user_login Username.
* @param WP_User $user WP_User object of the logged-in user.
*/
do_action('wp_login', $user->user_login, $user);

How/where it is defined?

Hooking into...

https://developer.wordpress.org/reference/functions/wp_signon/

https://developer.wordpress.org/reference/functions/wp_signon/

Example 2 (Filters)
Modify post content without editing template files

function dg_the_content($content) {
 $content .= '<p>' . __('This is the last paragraph') . '</p>';
 return $content;
}
add_filter('the_content', 'dg_the_content');

function the_content(...) {
 /// ...
 $content = apply_filters('the_content', $content);
 /// ...
 echo $content;
}

How/where it is defined?

Hooking into...

https://developer.wordpress.org/reference/hooks/the_content/ (hook)
https://developer.wordpress.org/reference/functions/the_content/ (function)

https://developer.wordpress.org/reference/hooks/the_content/
https://developer.wordpress.org/reference/functions/the_content/

List of all actions and filters

Actions Documentation
https://codex.wordpress.org/Plugin_API/Action_Reference/

Filters Documentation
https://codex.wordpress.org/Plugin_API/Filter_Reference

https://codex.wordpress.org/Plugin_API/Action_Reference/
https://codex.wordpress.org/Plugin_API/Filter_Reference

Post Types, Taxonomies, Metadata

Post Types
A way to organize your data, eg. Similarly to Pages, Posts for our own purposes we can
register Books post type which will allow us to store Books in the database

All the posts are stored in wp_posts table regardless of the type

- The type of the post is identified by the post_type column.
- Page and Post are native WordPress post types (and some other that are

private)

Post Types can be registered with the register_post_type function
https://codex.wordpress.org/Function_Reference/register_post_type

wp_posts

https://codex.wordpress.org/Function_Reference/register_post_type

add_action('init', 'bl_register_books');

function bl_register_books() {
 $labels = array(
 'name' => _x('Books', 'post type general name', 'books-library'),
 'singular_name' => _x('Book', 'post type singular name', 'books-library'),
 'menu_name' => _x('Books', 'admin menu', 'books-library'),
 'name_admin_bar' => _x('Book', 'add new on admin bar', 'books-library'),
 'add_new' => _x('Add New', 'book', 'books-library'),
 'add_new_item' => __('Add New Book', 'books-library'),
 'new_item' => __('New Book', 'books-library'),
 'edit_item' => __('Edit Book', 'books-library'),
 'view_item' => __('View Book', 'books-library'),
 'all_items' => __('All Books', 'books-library'),
);
 $args = array(
 'labels' => $labels,
 'public' => true,
 'publicly_queryable' => true,
 'show_ui' => true,
 'show_in_menu' => true,
 'query_var' => true,
 'rewrite' => array('slug' => 'book'),
 'capability_type' => 'post',
 'has_archive' => true,
 'hierarchical' => false,
 'menu_position' => null,
 'supports' => array('title', 'editor', 'featured', 'excerpt', 'comments')
);
 register_post_type('book', $args);
}

Example of the Books post type

Taxonomies
A way to group the data, they can be registered like the post types with some differences.

By default WordPress registers category(Categories) and post_tag(Tags) taxonomies

- Items in the specific taxonomy are called terms. Eg. Crime is term in the Genres taxonomy
- Once the taxonomy is registered successfully it will appear in the Post Type submenu and the term editor

will be available out of the box. (No need to code the functionality for creating or deleting terms or
assigning posts to specific terms in the taxonomy.)
https://codex.wordpress.org/Function_Reference/register_taxonomy

Example: Books can be grouped by Genre. In the next example we will see how we can register the Genre
taxonomy to the Books post type.

https://codex.wordpress.org/Function_Reference/register_taxonomy

Register the Genre Taxonomy
add_action('init', 'bl_register_genres', 0);

function bl_register_genres() {
 $labels = array(
 'name' => _x('Genres', 'taxonomy general name', 'books-library'),
 'singular_name' => _x('Genre', 'taxonomy singular name', 'books-library'),
 'search_items' => __('Search Genres', 'books-library'),
 'all_items' => __('All Genres', 'books-library'),
 'parent_item' => __('Parent Genre', 'books-library'),
 'parent_item_colon' => __('Parent Genre:', 'books-library'),
 'edit_item' => __('Edit Genre', 'books-library'),
 'update_item' => __('Update Genre', 'books-library'),
 'add_new_item' => __('Add New Genre', 'books-library'),
 'new_item_name' => __('New Genre Name', 'books-library'),
 'menu_name' => __('Genre', 'books-library'),
);
 $args = array(
 'hierarchical' => true,
 'labels' => $labels,
 'show_ui' => true,
 'show_admin_column' => true,
 'query_var' => true,
 'rewrite' => array('slug' => 'genre'),
);
 register_taxonomy('genre', array('book'), $args);
}

Example of the Genres editor

Posts Metadata
What is metadata and how it works?
Metadata in WordPress is way to store additional information about the posts that are stored in
wp_posts table. For example if we have post of the type ‘book’ (wp_posts.post_type=book) we can
add meta data like number of pages, author name, etc.

Where is the post metadata stored?
The metadata is stored in wp_postmeta(meta_id, post_id, meta_key, meta_value) table

How to manage the post metadata?
The metadata is managed in the editor. There are multiple ways to add metaboxes, including:

- Official https://developer.wordpress.org/plugins/metadata/custom-meta-boxes/
- Carbon Fields / https://github.com/htmlburger/carbon-fields
- CMB2 / https://github.com/CMB2/CMB2
- … a lot others like ACF, etc.

https://developer.wordpress.org/plugins/metadata/custom-meta-boxes/
https://github.com/htmlburger/carbon-fields
https://github.com/CMB2/CMB2

Example using CMB2 Framework

Including CSS / JS Files the
right way

How to include css/js files from plugin?

add_action('wp_enqueue_scripts', 'bl_enqueue_scripts', 15);
function bl_enqueue_scripts() {
 wp_enqueue_style('books-library', BL_URI . 'assets/style.css', null, BL_VERSION, 'all');
 wp_enqueue_script('books-library', BL_URI . 'assets/script.js', array('jquery'), BL_VERSION, true);
}

WordPress provides standardized way to include css/js scripts that ensures there aren’t duplicates. For
example if multiple plugins include jQuery there will be problems.

Use wp_enqueue_script/wp_enqueue_style to enqueue CSS and JS files that will be printed when the page is
rendered.

The registered scripts/styles are printed with help of wp_head() and wp_footer() functions called in the theme
header.php and footer.php files

Shortcodes

Shortcodes
A shortcode is WordPress specific code that in background generates dynamic content which
replaces the shortcode itself.

By default WordPress registers the [gallery] shortcode that can be used to display the images
uploaded to the post

In our case we will register shortcode that displays the books
[books_library total=6]

Note: In the Git repository of the plugin this shortcode is extended to support querying by genre
[books_library_extended total=6 genre=fantasy]

https://github.com/gdarko/books-library/blob/master/includes/shortcodes.php

https://github.com/gdarko/books-library/blob/master/includes/shortcodes.php

add_shortcode('books_library', 'books_library');

function books_library($args) {

 $atts = shortcode_atts(array('total' => 5), $args); // Combine user defined parameters with defaults

 // Retrieve the Book posts
 $books = get_posts(array(
 'posts_per_page' => $args['total'],
 'post_type' => 'book',
 'post_status' => 'publish',
 'orderby' => 'date',
 'order' => 'DESC',
));

 // Output the books
 if (count($books) > 0) {
 $output = '';
 foreach ($books as $book) {
 $output .= '' . $book->post_title . '';
 }
 $output .= '';
 } else {
 $output = __('No books found', 'books-library');
 }

 return $output;
}

Creating our first shortcode [books_library]

GOOD PRACTICES

Don’t just do it, Do it right!
1. Do not trust the user input. Always: validate, sanitize, escape!

WordPress comes with pre-made functions for those purposes:
https://developer.wordpress.org/themes/theme-security/data-sanitization-escaping/

2. Make use the of the WordPress built-in apis for better compatibility.

● Use HTTP API instead of curl_init() function. Eg: wp_remote_request()
https://developer.wordpress.org/plugins/http-api/

● Object Cache for in-memory caching (useful when using Redis in combination with the Redis
plugin - https://codex.wordpress.org/Class_Reference/WP_Object_Cache)

● Transients API for persistent caching https://codex.wordpress.org/Transients_API
● Settings API for creating admin screens https://codex.wordpress.org/Settings_API
● Options API for storing key/value options persistently in the db

https://codex.wordpress.org/Options_API

Complete list of all native APIs: https://codex.wordpress.org/WordPress_API%27s

https://developer.wordpress.org/themes/theme-security/data-sanitization-escaping/
https://developer.wordpress.org/plugins/http-api/
https://codex.wordpress.org/Class_Reference/WP_Object_Cache
https://codex.wordpress.org/Transients_API
https://codex.wordpress.org/Settings_API
https://codex.wordpress.org/Options_API
https://codex.wordpress.org/WordPress_API%27s

Thanks for your attention!
Any questions?

Presentation available on
dg.mk/wcskp19

